国产最新进精品视频,午夜DY888国产精品影院,jzzijzzij日本成熟少妇,日本精品久久久久中文字幕

化苑講壇
首頁 >> 化苑講壇 >> 正文

美國密歇根州立大學(xué)Kenneth M. Merz Jr.教授做客第386期化苑講壇

作者:  發(fā)布:2018-12-13 09:49:44  點(diǎn)擊量:

報(bào)告題目Role of Dynamics in Enzymatic Electrophilic Aromatic Substitution

報(bào) Kenneth M. Merz Jr.(密歇根州立大學(xué)Joseph Zichis講席教授,Journal of Chemical Information and Modeling主編)

報(bào)告時(shí)間:2018125周三上午10:00

報(bào)告地點(diǎn):化學(xué)樓一號(hào)會(huì)議室

請(qǐng) 人:廖榮臻教授

報(bào)告人簡(jiǎn)介:

Prof. Kenneth M. Merz Jr. did his undergraduate studies at Washington College and received his Ph.D. degree at The University of Texas at Austin in 1985 (with Michael J. S. Dewar). He was a postdoctoral fellow at Cornell University (with Roald Hoffmann), and at University of California, San Francisco (with Peter Kollman). In 1989, he joined the Pennsylvania State University as an assistant professor, promoted to associated professor in 1996 and full professor in 1998. In 2013, he moved to Michigan State University as a director of Institute for Cyber Enabled Research and a Joseph Zichis Chair in Chemistry. He has published over 300 papers in international journals, including Chem. Rev., Acc. Chem. Res., Proc. Natl. Acad. Sci. U.S.A., Angew. Chem. Int. Ed., and J. Am. Chem. Soc. Since the start of 2014, he has been the Editor-in-Chief of the Journal of Chemical Information and Modeling.

報(bào)告簡(jiǎn)介:

FtmPT1 is a fungal indole prenyltransferase that affords Tryprostatin B from Brevianamide F and dimethyl allyl pyrophosphate; however, when a single residue in the active site is mutated (Gly115Thr) a novel five-member ring compound is obtained as the major product with Brevianamide F as the minor product (see Scheme 1). We will discuss detailed studies of the catalysis of the Gly115Thr mutant of FtmPT1 with a focus on the observed regioselectivity of this enzymatically catalyzed electrophilic aromatic substitution reaction. We employ 1-D and 2-D potential of mean force (PMF) simulations to explore the catalytic mechanism, along with MD simulations exploring the reaction dynamics of the prenyl transfer reaction. Importantly, we observe that the two reaction pathways (native and mutant) have comparable activation parameters and propose that the origin for the formation of the novel product in the mutant protein is predicated on reaction dynamics.

版權(quán)所有 華中科技大學(xué)化學(xué)與化工學(xué)院 COPYRIGHT 2014-2021
通訊地址:湖北省武漢市洪山區(qū)珞喻路1037號(hào)華中科技大學(xué)西一樓208室
郵編:430074
聯(lián)系電話:027-58868736
學(xué)院郵箱:[email protected]

  • 微信公眾號(hào)